

## **Description**

document décrit les caractéristiques techniques du firmware JSC608io. Ce firmware est compatible avec la carte BXJ00 V2.0. Cette carte, une fois munie du firmware, permet de remonter des informations numériques et analogiques à un ordinateur par l'intermédiaire d'une liaison USB. Ce périphérique ne nécessite pas l'utilisation de driver. Lors du premier branchement, il est reconnu automatiquement par le système d'exploitation comme un périphérique de type controleur de jeu. Le logiciel de configuration fourni avec le firmware permet de modifier le comportement des entrées/sorties numériques et analogiques de la carte suivant les besoins. Chaque carte possède son propre numéro de série.

Compatibilité : Windows XP, Windows 7,

Windows 8, Linux

**Applications**: joystick, carte d'entrées/sorties PC.

## Caractéristiques techniques

- Compatible USB 2.0
- Temps de latence USB: < 16ms.
- 60 entrées numériques = 48 entrées classiques + 12 entrées clavier. Note: une résistance de pull-up de 100kΩ est implémentée sur chaque entrée numérique
- 16 sorties numériques
- 7 entrées analogiques avec 12 bits de resolution

# Paramètres de configuration

Les paramètres suivant peuvent être mis à jour en utilisant le logiciel de configuration du firmware JSC608io.

#### Paramètres généraux

 "Set on change". Si activée, cette option permet une détection sur changement d'état des entrées numériques

#### Entrées numériques :

- Temps de filtrage de 4ms à 128ms
- Simulation d'un bouton poussoir (push) ou d'un bouton bistable (toggle). Dans ce mode un filtrage de 16ms est appliquée par défaut.
- Inversion de polarité
- Jusquà 8 codeurs rotatifs supportés. 2 entrées utlisées par codeurs (rAx et rBx). Les principaux types de codeurs rotatif sont supportés de 0.5 à 4 impulsions par cran.

#### Sorties numériques :

• Etat des sorties on/off ou clignotantes (période de clignotement variant de 128ms à 2s).

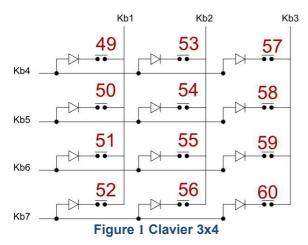
Les sorties O25 et O26 sont activées uniquement si les entrées N1 et N2, respectivement, sont activées. Une option matériel leur permet d'être 2 sorties de puissance (voir la datasheet de la carte BXJ00 V2.0 pour plus d'information).

#### Entrées analogiques :

- Temps de filtrage de 4ms à 256ms
- Inversion de polarité
- Sensibilité de 0,00 à 127,99 (voir Figure 3)
- detectivité (voir Figure 3)
- activation/dé-activation de la voie

## **Mapping**

| CON1    |         | 7         | CON2                   |                        |
|---------|---------|-----------|------------------------|------------------------|
| N1/O1   | N2/O2   | 32        | GND                    | GND                    |
| N3/O3   | N4/O4   | 31        | N25/ <u><b>O25</b></u> | N26/ <u><b>O26</b></u> |
| GND     | GND     | 30        | N27/rA6                | N28/rB6                |
| N5/O5   | N6/O6   | 29        | GND                    | GND                    |
| N7/O7   | N8/O8   | 28        | N29/rA7                | N30/rB7                |
| GND     | GND     | 27        | N31/rA8                | N32/rB8                |
| N9/O9   | N10/O10 | 26        | GND                    | GND                    |
| N11/O11 | N12/O12 | 25        | N33                    | N34                    |
| GND     | GND     | 24        | N35                    | N36                    |
| N13/O13 | N14/O14 | 23        | GND                    | GND                    |
| N15/rA5 | N16/rB5 | 22        | N37                    | N38                    |
| GND     | GND     | 21        | N39                    | N40                    |
| N17/rA1 | N18/rB1 | 20        | GND                    | GND                    |
| N19/rA2 | N20/rB2 | 19        | N41                    | N42                    |
| GND     | GND     | 18        | N43                    | N44                    |
| N21/rA3 | N22/rB3 | 17        | GND                    | GND                    |
| N23/rA4 | N24/rB4 | 16        | N45                    | N46                    |
| GND     | GND     | 15        | N47                    | N48                    |
| A7      | A6      | 14        | GND                    | GND                    |
| VCC     | VCC     | 13        | VCC                    | VCC                    |
| I1+     | l1-     | 12        | Reset                  | Kb4                    |
| A1+     | A1-     | 11        | Kb5                    | Kb6                    |
| GND     | GND     | 10        | GND                    | GND                    |
| VCC     | VCC     | 9         | VCC                    | VCC                    |
| 12+     | 12-     | 8         | Kb7                    | Kb1                    |
| A2+     | A2-     | 7         | Kb2                    | Kb3                    |
| GND     | GND     | 6         | GND                    | GND                    |
| VCC     | VCC     | 5         | VCC                    | VCC                    |
| A3+     | A3-     | 4         | N.U                    | N.U                    |
| GND     | GND     | 3         | Bootloader             | N.U                    |
| VCC     | VCC     | 2         | GND                    | GND                    |
| A4      | A5      | USB       | VCC                    | VCC                    |
|         |         | connector |                        |                        |




#### Information supplémentaires sur le mapping:

- broche Bootloader: si connectée à la masse, le bootloader est lancé à la mise sous tension de la carte.
- Nxx: entrées numériques
- Oxx: sorties numériques
- N.U. broche non utilisée (elles doivent rester en l'air)
- Kbx: entrées clavier (3x4)
- lx+, lx-: générateur de courant constant
- Ax+,Ax-: entrées analogiques différentielles
- Ax: entrées analogiques en mode commun
- rAx: entrées stables des codeurs rotatifs
- rBx: entrées instables des codeurs rotatifs

#### Entrées clavier

Les entrées clavier sont utilisées pour étendre le nombre d'entrées numériques disponibles. L'implémentation du clavier est représentée ci-dessous:



La matrice de diode n'est pas câblée sur la carte BXJ00 V2.0.

## **Codeurs rotatifs**

Un codeur rotatif retourne l'angle de rotation relatif grâce à la génération de 2 signaux en quadrature. La phase relative de ces signaux renseigne sur le sens de rotation tandis que le nombre d'impulsions renseigne sur l'angle effectué. Ainsi, un codeur rotatif nécessite 2 entrées sur la carte. Généralement, l'une de ces entrées a un état non défini quand le codeur est au repos. Cette entrée doit correspondre à l'entrée instable *rBx*. Tandis que l'entrée stable doit être câblée sur *rAx* (voir Figure 2).

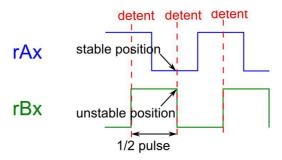



Figure 2 Logique d'un codeurs rotatif

## Sorties numériques

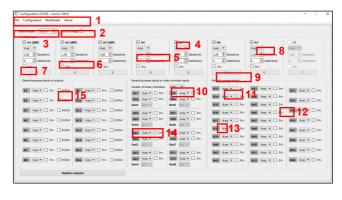
Les 16 sorties numériques sont multiplexées avec les 16 premières entrées numériques. Si le port est configuré en sortie alors la période de clignotement est facilement modifiable via le logiciel de configuration. La commande de l'état des sorties par un logiciel tiers se fait en envoyant un rapport Feature (Report ID=0) sur l'endpoint 0 de l'USB. La taille de ce rapport est de 112 octets. Le description de la structure du rapport Feature est donné au Tableau 1. Le Tableau 2 donne le codage des octets *Outxx*.

| Désignation          | Offset      | Taille en octet |
|----------------------|-------------|-----------------|
| Octet magique = 0x03 | 0x00        | 1               |
| Out01                | 0x01        | 1               |
| Out02                | 0x02        | 1               |
| Out03                | 0x03        | 1               |
| Out04                | 0x04        | 1               |
| Out05                | 0x05        | 1               |
| Out06                | 0x06        | 1               |
| Out07                | 0x07        | 1               |
| Out08                | 0x08        | 1               |
| Out09                | 0x09        | 1               |
| Out10                | 0x0A        | 1               |
| Out11                | 0x0B        | 1               |
| Out12                | 0x0C        | 1               |
| Out13                | 0x0D        | 1               |
| Out14                | 0x0E        | 1               |
| Out25                | 0x0F        | 1               |
| Out26                | 0x10        | 1               |
| Non utilisé = 0x00   | 0x11 à 0x6F | 95              |

Tableau 1: Structure du rapport Feature



| Champs de bit | Désignation                                                                                                                                                                                                                                                                               |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 0         | Si Bit7-6 = 11<br>= 1 (tension de 5V appliquée sur Outxx)<br>= 0 (tension de 0V appliquée sur Outxx)                                                                                                                                                                                      |
|               | Sinon                                                                                                                                                                                                                                                                                     |
|               | = 1 (entrée inversée)<br>= 0 (entrée non inversée)                                                                                                                                                                                                                                        |
| Bit 7 Bit 1   | Si Bit7-6 = 11                                                                                                                                                                                                                                                                            |
|               | = 1100001 (clignotement 128ms)<br>= 1100010 (clignotement 256ms)<br>= 1100100 (clignotement 512ms)<br>= 1101000 (clignotement 1024ms)<br>= 1110000 (clignotement 2048ms)<br>= 1111111 (période infinie)                                                                                   |
|               | Sinon                                                                                                                                                                                                                                                                                     |
|               | = 0000001 (moyennage sur 4ms)<br>= 0000010 (moyennage sur 8ms)<br>= 0000100 (moyennage sur 16ms)<br>= 0001000 (moyennage sur 32ms)<br>= 0010000 (moyennage sur 64ms)<br>= 0100000 (moyennage sur 128ms)<br>= 1000000 (simule un bouton poussoir)<br>= 1010000 (simule un bouton bistable) |


Tableau 2: Codage d'un octet Outxx

## Le logiciel de configuration

Le logiciel de configuration du firmware JSC608io permet les fonctionnalités suivantes :

- Chargement d'un firmware en utilisant le bootloader
- Configuration des paramètres joystick
- Représentation des états courants du joystick

## Fenêtre principale



| N° | Item                 | Description                                   |
|----|----------------------|-----------------------------------------------|
| 1  | File-> Open          | Ouverture et chargement de configuration      |
|    | File-> Save As       | (*.joy)                                       |
|    | File-> Save          | Sauvegarde fichier de configuration (*.joy)   |
| 1  | Configuration->      | Chargement de la configuration dans le        |
|    | Flash                | microcontrôleur                               |
|    | configuration        |                                               |
| 1  | Bootloader->         | Chargement du firmware dans le                |
|    | Flash firmware       | microcontrôleur                               |
| 1  | Bootloader->         | Démarrage bootloader                          |
|    | Launch bootloader    |                                               |
| 1  | About->              | Information sur le logiciel                   |
|    | Information          |                                               |
| 2  | Set on change        | Changement sur état                           |
| 4  | Enable analog        | Activation/désactivation de la voie           |
|    | input                | analogique correspondante                     |
| 5  | Sensitivity          | Réglage de la sensibilité, voir Figure 3      |
| 6  | Detectivity          | Réglage de la détectivité, voir Figure 3      |
| 7  | Invert analog input  | Inversion de la lecture de la voie analogique |
| 8  | Filtering time       | Réglage du temps de filtrage de la voie       |
|    |                      | analogique (de 4ms à 256ms)                   |
| 9  | Progress bar         | Représentation de l'état de la voie           |
|    |                      | analogique                                    |
| 10 | Number of rotary     | Réglage du nombre de codeurs rotatifs (0 à    |
|    | encoders             | 8).                                           |
| 11 | Filtering time       | Réglage du temps de filtrage de l'entrée      |
|    |                      | numérique (de 4ms à 256ms)                    |
| 12 | Invert digital input | Inversion de la logique de l'entrée           |
|    |                      | numérique                                     |
| 13 | Indicator            | Représentation de l'état de l'entrée          |
|    |                      | numérique                                     |
| 14 | Rotary option        | Réglage du nombre d'impulsion par cran        |
|    |                      | (de 0.5 à 4)                                  |
| 15 | In/out               | Sélection entrée ou sortie. Lorsque la sortie |
|    |                      | est sélectionnée le menu déroulant permet     |
|    |                      | de choisir la période de clignotement.        |



### Exemple de mise à jour du firmware

- 1 Démarrer le logiciel
- 2 Connecter le périphérique USB
- 3 Sélectionner et charger le firmware (Bootloader-> Flash Firmware)

## Exemple de mise à jour de la configuration

- 1 Démarrer le logiciel
- 2 Connecter le périphérique USB
- 3 Régler la configuration à l'aide de l'interface (voir la section « Fenêtre principale »
- 4 Mettre à jour la configuration de la carte (Configuration->Flash configuration)

# Exemple de configuration des entrées analogiques

- 1 Démarrer le logiciel
- 2 Connecter le périphérique USB
- 3 Régler la détectivité à 0 et la sensibilité à 1.0
- 4 Mettre à jour la configuration de la carte (Configuration->Configuration update)
  - A cette étape, la valeur lue dans la barre de progression indique l'offset de la voie analogique



- 5 Régler la détectivité égale à la valeur d'offset lue (396 dans l'exemple)
- 6 Mettre à jour la configuration de la carte (Configuration->Configuration update)

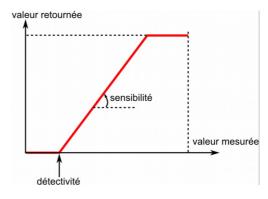



Figure 3 Définition de la sensibilité et détectivité

Pour information, la valeur « valeur retournée » est en relation avec la valeur « valeur mesurée » selon l'équation suivante

valeur retournée = sensibilité x (valeur mesurée - détectivité)